
Andrey Alekseenko

oneAPI Case Study: GROMACS

KTH Royal Institute of Technology & SciLifeLab

Stockholm, Sweden



GROMACS

• Open-source molecular dynamics engine
• One of the most used HPC codes worldwide
• High-performance for a wide range of modeled systems
• … and on a wide range of platforms:

• from supercomputers to laptops (Folding@Home)
• x86, x86-64, ARM, POWER, SPARC, RISC-V
• 11 SIMD backends
• AMD, Apple, Intel, and NVIDIA GPUs; Intel Xeon Phi
• Windows, MacOS, BSD, included in many Linux distros

2023-09-13 HLRS Intel oneAPI Workshop 2



GROMACS 2024 (upcoming)

• (Mostly) modern C++17 codebase
• 468k lines of C++ code
• With a bit of legacy (first release: 1991)

• MPI for inter-node parallelism
• OpenMP for multithreading
• SIMD for low-latency operations on CPU
• GPU offload for high-throughput operations

• CUDA: NVIDIA
• OpenCL: AMD, Apple, Intel, NVIDIA
• SYCL: AMD, Intel, NVIDIA

2023-09-13 HLRS Intel oneAPI Workshop 3



Molecular dynamics

• Iterative problem
• Like N-body, but with fancier physics

• One step ~1 fs, need to simulate µs to ms
• 109-1012 steps

2023-09-13 HLRS Intel oneAPI Workshop 4

Páll et al., J. Chem. Phys. 153, 134110 (2020)

https://aip.scitation.org/doi/abs/10.1063/5.0018516


Heterogeneous parallelization

• Minimize latency
• Minimize CPU and GPU stalls
• Minimize data exchange between host and device

• And between nodes

• Optimal offloading scheme depends on simulated system
• And on available hardware

• Must be maintainable

2023-09-13 HLRS Intel oneAPI Workshop 5



Molecular dynamics: real schedule

2023-09-13 HLRS Intel oneAPI Workshop 6

Páll et al., J. Chem. Phys. 153, 134110 (2020)

https://aip.scitation.org/doi/abs/10.1063/5.0018516


Molecular dynamics: real schedule

2023-09-13 HLRS Intel oneAPI Workshop 7

Páll et al., J. Chem. Phys. 153, 134110 (2020)

Send data ASAP
to remote ranks

Only if the list
has changed

Transfer local
coordinates
while waiting
for remote ones

PME and NB work
can be balanced
by tuning pair list

Should be scheduled before
the big local NB kernel

Frequency can be adjusted
by changing list buffer size

https://aip.scitation.org/doi/abs/10.1063/5.0018516


GPU feature support in GROMACS 2020

Non-bonded offload √ √

PME offload √ √

Update offload √ X

Bonded offload √ X

Direct GPU-GPU comm √ X

Hardware support NVIDIA NVIDIA, AMD, Intel

2023-09-13 HLRS Intel oneAPI Workshop 8



Why another GPU framework?

2023-09-13 HLRS Intel oneAPI Workshop 9

Intel Data Center GPU MaxAMD Instinct GPU

First exascale systems

 



Why not OpenCL?

• OpenCL kernels are C99, the rest of GROMACS is C++17
• C++ kernels are not widely supported
• Separate-source model
• Hard to maintain

• Supported by all vendors, preferred by none
• No interoperability with native libraries

• GPU-aware MPI is a must on modern systems

2023-09-13 HLRS Intel oneAPI Workshop 10



Why SYCL?

• Open standard, free (libre) implementations
• Implemented on top of existing backends

• Intel® oneAPI DPC++: OpenCL and Level Zero; CUDA; HIP
• hipSYCL / Open SYCL: CUDA, HIP, Level Zero; OpenCL (pre-release)
• Leverage existing compilers and profiling and debugging tools

• Standard C++ with a custom library
• No need for extra support in linters, IDEs, etc.

• Logically similar to OpenCL
• (Almost) no need to deeply modify existing code

• Standardized interop with native libraries

2023-09-13 HLRS Intel oneAPI Workshop 11



SYCL enablement plan (late 2020)

• Step 1:
• Target oneAPI DPC++ / Intel GPUs, but stay standard-compliant
• Extend the portability layer (device initialization, data transfers, etc)
• Remove code specific to CUDA/OpenCL

• Step 2:
• Port kernels accounting for majority of run time

• Step 3:
• Expand support to AMD GPUs
• Port the rest of the kernels
• Add support for GPU-aware MPI
• Optimize kernels and runtime

2023-09-13 HLRS Intel oneAPI Workshop 12



SYCL enablement plan

• Step 1:
• Target oneAPI DPC++ / Intel GPUs, but stay mostly standard-compliant
• Extend the portability layer (device initialization, data transfers, etc)
• Remove code specific to CUDA/OpenCL: still ongoing…

• Step 2:
• Port kernels accounting for majority of run time

• Step 3:
• Expand support to hipSYCL; AMD and NVIDIA GPUs
• Port the rest of the kernels
• Add support for GPU-aware MPI
• Optimize kernels and runtime: we’re here

2023-09-13 HLRS Intel oneAPI Workshop 13



Automatic conversion?

• SYCLomatic: automated CUDA⇨SYCL conversion tool
• ChatGPT: also works, at least for simple cases

• We want to have both CUDA and SYCL in the same codebase
• Already have abstraction layer for Device, Queue, etc

• Supports CUDA and OpenCL
• CUDA kernels heavily optimized for NVIDIA
• Rewriting kernels is ~trivial

• Conclusion: manual porting

2023-09-13 HLRS Intel oneAPI Workshop 14



GPU framework comparison

2023-09-13 HLRS Intel oneAPI Workshop 15

Scheduling
in-order queue
or explicit DAG

in-order and 
out-of-order queues

implicit DAG and
in-order queues

Synchronization event separate barrier
associated with a task
or a barrier associated with a task

Timing measurement regions of a single event of a single event

Timing enablement at event creation at queue creation at queue creation

Device selection stateful per-thread explicit in each call explicit in each call

Native float3 size 12 bytes 16 bytes 16 bytes



GPU framework comparison

2023-09-13 HLRS Intel oneAPI Workshop 16

Scheduling
in-order queue
or explicit DAG

in-order and 
out-of-order queues

implicit DAG and
in-order queues

Synchronization event separate barrier
associated with a task
or a barrier associated with a task

Timing measurement regions of a single event of a single event

Timing enablement at event creation at queue creation at queue creation

Device selection stateful per-thread explicit in each call explicit in each call

Native float3 size 12 bytes 16 bytes 16 bytes

We already had an abstraction layer



SYCL Buffers or USM

• Buffers prevent bugs and improve performance
• At least in theory, the runtime must be smart

• GROMACS is built around in-order queues, with explicit synchronizations
• Additional divergence between backends when using buffers

• Solution: use in-order queues and USM instead
• Bonus:

• Accessors are hard to optimize for compiler
• Easier interop with native libraries

2023-09-13 HLRS Intel oneAPI Workshop 17



Synchronization Events

• We use barriers in CUDA and OpenCL, but SYCL does not have them
• Event can be recorded far from the last submission

• Not easy to tell which operation should be used for synchronization

• Solution: Use extensions to mark events:
• oneAPI: SYCL_EXT_ONEAPI_ENQUEUE_BARRIER
• hipSYCL: hipSYCL_enqueue_custom_operation to submit empty jobs

acting as barriers

2023-09-13 HLRS Intel oneAPI Workshop 18



Synchronization Events

• Using vendor extensions to mark events
• Same logic for all backends!
• Code no longer fully standard-compliant
• Works well with some extensions (hipSYCL’s coarse-grained events)
• Not compatible with some other extensions (oneAPI’s SYCL Graph)
• Performance issues with Level Zero

• Possibly will have to add a standard-compliant solution based 
on manually tracking the last recorded event

2023-09-13 HLRS Intel oneAPI Workshop 19



Other differences to keep in mind

• Exceptions vs return codes
• Different and variable (for Intel) sub-group sizes
• Thread indexing order:

• CUDA and OpenCL: thread (x, y, z) is adjacent to (x+1, y, z)
• SYCL: thread (x, y, z) is adjacent to (x, y, z+1)

• No SYCL implementation is fully standard-compliant yet
• It’s getting better

2023-09-13 HLRS Intel oneAPI Workshop 20



Interoperability in practice: FFT

• With USM, we have native device pointers
• Can mix-and-match native and SYCL kernels / API

• Intel GPUs: oneMKL or Double-Batched FFT
• AMD GPUs: rocFFT or vkFFT via HIPSYCL_EXT_ENQUEUE_CUSTOM_OPERATION
• NVIDIA GPUs: vkFFT via HIPSYCL_EXT_ENQUEUE_CUSTOM_OPERATION
• HeFFTe with oneMKL/rocFFT for multi-GPU decomposition

2023-09-13 HLRS Intel oneAPI Workshop 21



Performance portability in practice

• GROMACS uses SYCL to run on:
• Intel GPUs via oneAPI,
• AMD and NVIDIA GPUs via oneAPI and hipSYCL.

• Vendor-specific code:
• Sub-group-size-dependent algorithms
• FFT invocation, a lot of related CMake scripting
• Extensions for synchronization events and runtime hints

• Overload some functions to use architecture-specific intrinsics
• A data layout hack for two conflicting compiler issues

2023-09-13 HLRS Intel oneAPI Workshop 22



Performance portability in practice

• Kernel performance, compared to native CUDA/HIP/OpenCL:
• Accessors waste registers, use raw pointers
• Complex kernels might require some profiling

• Typically, missed optimizations
• Not too hard to get within 15%

• Less complex kernels

• Extra runtime overhead when dealing with small kernels
• Not an issue for larger kernels

2023-09-13 HLRS Intel oneAPI Workshop 23



Performance portability in practice

2023-09-13 HLRS Intel oneAPI Workshop 24

MI250X, ROCm 5.3.3, hipSYCL and oneAPI vs HIP native



• When dealing with small kernels (<10 µs), beware of runtime 
overheads

• Solutions:
• hipSYCL’s coarse-grained events
• hipSYCL’s instant submission mode
• hipSYCL’s caching control
• oneAPI’s discard_event queues
• oneAPI’s SYCL graphs
• Poke runtime developers ☺

Performance portability in practice

200

300

400

500

600

8 10 12 14 16

Pe
rf

or
m

an
ce

, n
s/

da
y

Threads per GCD

48k atoms on Dardel GPU node
(AMD MI250X, 8c/16t per GCD)

hipSYCL oneAPI HIP native

2023-09-13 HLRS Intel oneAPI Workshop 25



Results

• SYCL is a feature-complete GPU backend in GROMACS

• Support GPUs from all three vendors with minimal specialization
• Performance typically within 20% of highly-optimized native code
• Downside: any change of code requires extensive testing

• Production ready:
• Running on LUMI today, efficiently scaling across multiple nodes

2023-09-13 HLRS Intel oneAPI Workshop 26



Conclusions

• SYCL allow writing performant, portable, maintainable code
• … but running fast is never easy

• Still need vendor-specific code branches to get the best performance
• Runtime might behave sub-optimally by default

• Still, in many cases, it just works!

• New versions can bring both improvements and regressions

2023-09-13 HLRS Intel oneAPI Workshop 27



Acknowledgements

• Intel Corporation
• Mark Abraham , Heinrich Bockhorst and Roland Schulz (Intel)
• Aksel Alpay (Heidelberg University Computing Centre)
• GROMACS dev team, in particular Szilárd Páll

2023-09-13 HLRS Intel oneAPI Workshop 28



Learn more

• https://www.gromacs.org/
• https://gromacs.bioexcel.eu/
• https://manual.gromacs.org/

• Páll et al., J. Chem. Phys. 153, 134110 (2020)

• If you have questions: ask them on Slack

• or email me: andreyal@kth.se

2023-09-13 HLRS Intel oneAPI Workshop 29

https://www.gromacs.org/
https://gromacs.bioexcel.eu/
https://manual.gromacs.org/documentation/2022.3/index.html
https://aip.scitation.org/doi/abs/10.1063/5.0018516

	Slide 1
	Slide 2: GROMACS
	Slide 3: GROMACS 2024 (upcoming)
	Slide 4: Molecular dynamics
	Slide 5: Heterogeneous parallelization
	Slide 6: Molecular dynamics: real schedule
	Slide 7: Molecular dynamics: real schedule
	Slide 8: GPU feature support in GROMACS 2020
	Slide 9: Why another GPU framework?
	Slide 10: Why not OpenCL?
	Slide 11: Why SYCL?
	Slide 12: SYCL enablement plan (late 2020)
	Slide 13: SYCL enablement plan
	Slide 14: Automatic conversion?
	Slide 15: GPU framework comparison
	Slide 16: GPU framework comparison
	Slide 17: SYCL Buffers or USM
	Slide 18: Synchronization Events
	Slide 19: Synchronization Events
	Slide 20: Other differences to keep in mind
	Slide 21: Interoperability in practice: FFT
	Slide 22: Performance portability in practice
	Slide 23: Performance portability in practice
	Slide 24: Performance portability in practice
	Slide 25: Performance portability in practice
	Slide 26: Results
	Slide 27: Conclusions
	Slide 28: Acknowledgements
	Slide 29: Learn more

